generate.Rd
Generates samples following the Principal Fitted Components model with \(r = 2\), \(d = 1\) and covariance matrix \(\sigma\)2 times the \(p x p\) identity matrix (for more details see Bergesio et al. (2020)). The simulated model has covariate \(Fy = (y,\)y2)t, where \(y\) has uniform distribution in the \((0,4)\) interval.
generate(p, n, mutrue, gammatrue, betatrue, sigmatrue)
p | dimension of the response vector in the inverse model |
---|---|
n | size of the sample required |
mutrue | vector of dimension \(p\) with the true value of parameter \(\mu\) |
gammatrue | matrix \(p x d\) with the true value of parameter \(\Gamma\) |
betatrue | matrix \(d x r\), with \(d=1\), containing the true value of the parameter \(\beta\) |
sigmatrue | constant standard deviation of the error term |
List with the following components
\(n x p\) matrix, each row is a response vector
\(n x r\) matrix, each row is the corresponding covariate vector
Bergesio, A., Szretter Noste, M. E. and Yohai, V. J. (2020). A robust proposal of estimation for the sufficient dimension reduction problem
require(MASS)#>p=10 generate(p,n=1,mutrue=rep(0,p),gammatrue=as.matrix(c(1,rep(0,p-1))), betatrue=t(as.matrix(c(1,1))),sigmatrue=1)#> $Fy #> [,1] [,2] #> [1,] 1.963466 3.8552 #> #> $X #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] #> [1,] 5.200149 -0.6467495 0.451478 -0.33011 0.1553845 1.640898 -0.7331763 #> [,8] [,9] [,10] #> [1,] 0.007810282 0.6904836 0.3864392 #>